Compare commits
3 Commits
2e9520a4f1
...
bda9f5dc59
| Author | SHA1 | Date | |
|---|---|---|---|
| bda9f5dc59 | |||
| 830b1dc81c | |||
| 3ac7a435a1 |
4
src/Pages/Other/en/page-not-found.md
Normal file
4
src/Pages/Other/en/page-not-found.md
Normal file
@ -0,0 +1,4 @@
|
||||
Page not found
|
||||
==============
|
||||
|
||||
This page is not available in English, please change the language.
|
||||
4
src/Pages/Other/nl/page-not-found.md
Normal file
4
src/Pages/Other/nl/page-not-found.md
Normal file
@ -0,0 +1,4 @@
|
||||
Pagina niet gevonden
|
||||
====================
|
||||
|
||||
Deze pagina is niet beschikbaar in het Nederlands, verwissel alstublieft van taal.
|
||||
@ -1,6 +0,0 @@
|
||||
## C#
|
||||
|
||||
#### Basics
|
||||
|
||||
* [types](./types)
|
||||
* [strings](./strings)
|
||||
6
src/Pages/Software/dotnet/csharp/en/main.md
Normal file
6
src/Pages/Software/dotnet/csharp/en/main.md
Normal file
@ -0,0 +1,6 @@
|
||||
## C#
|
||||
|
||||
### Basics
|
||||
|
||||
* [types](./types)
|
||||
* [strings](./strings)
|
||||
31
src/Pages/Software/haskell/en/caesar-cipher.md
Normal file
31
src/Pages/Software/haskell/en/caesar-cipher.md
Normal file
@ -0,0 +1,31 @@
|
||||
## Caesar Cipher
|
||||
|
||||
The implementation of the [Caesar's Cipher](https://en.wikipedia.org/wiki/Caesar_cipher) in Haskell.
|
||||
|
||||
*Source*: [Programming in Haskell, by Graham Hutton](https://people.cs.nott.ac.uk/pszgmh/pih.html)
|
||||
|
||||
```haskell
|
||||
import Data.Char
|
||||
import Prelude
|
||||
|
||||
let2int :: Char -> Int
|
||||
let2int c | isLower c = ord c - ord 'a'
|
||||
| otherwise = ord c - ord 'A'
|
||||
|
||||
int2let :: Int -> Bool -> Char
|
||||
int2let n isLowercase = chr (ord (if isLowercase then 'a' else 'A') + n)
|
||||
|
||||
shift :: Int -> Char -> Char
|
||||
shift n c | isLower c = int2let ((let2int c + n) `mod` 26) (isLower c)
|
||||
| isUpper c = int2let ((let2int c + n) `mod` 26) (isLower c)
|
||||
| otherwise = c
|
||||
|
||||
encode :: Int -> String -> String
|
||||
encode n xs = [shift n x | x <- xs]
|
||||
|
||||
|
||||
ghci> encode 5 "This is a Caesar Cipher"
|
||||
-- "Ymnx nx f Hfjxfw Hnumjw"
|
||||
ghci> encode (-5) "Ymnx nx f Hfjxfw Hnumjw"
|
||||
-- "This is a Caesar Cipher"
|
||||
```
|
||||
@ -0,0 +1,41 @@
|
||||
## Conditional expressions and Guarded equations
|
||||
|
||||
---
|
||||
|
||||
### Conditional expressions
|
||||
|
||||
```haskell
|
||||
signum :: Int -> Int
|
||||
signum n = if n < 0 then -1 else
|
||||
if n == 0 then 0 else 1
|
||||
```
|
||||
|
||||
And a **safetail** function, where an empty list is returned instead of an error when given an empty list.
|
||||
|
||||
```haskell
|
||||
safetail :: [a] -> [a]
|
||||
safetail xs = if length xs > 0 then tail xs else []
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### Guarded equations
|
||||
|
||||
An alternative to conditional expressions, functions can be defined with guarded equations.
|
||||
|
||||
An example of the **signum** function:
|
||||
|
||||
```haskell
|
||||
signum :: Int -> Int
|
||||
signum n | n < 0 = -1
|
||||
| n == 0 = 0
|
||||
| otherwise = 1
|
||||
```
|
||||
|
||||
Here is **safetail** with guarded equations:
|
||||
|
||||
```haskell
|
||||
safetail :: [a] -> [a]
|
||||
safetail xs | length xs > 0 = tail xs
|
||||
| otherwise = []
|
||||
```
|
||||
252
src/Pages/Software/haskell/en/graham-hutton-answers.md
Normal file
252
src/Pages/Software/haskell/en/graham-hutton-answers.md
Normal file
@ -0,0 +1,252 @@
|
||||
## Programming in Haskell by Graham Hutton
|
||||
|
||||
This book is what I used to learn the programming language Haskell. This page contains all my exercise answers.
|
||||
|
||||
*Source*: [Programming in Haskell, by Graham Hutton](https://people.cs.nott.ac.uk/pszgmh/pih.html)
|
||||
|
||||
* [Chapter 4 - Defining functions](#Chapter-4)
|
||||
* [Chapter 5 - List comprehensions](#Chapter-5)
|
||||
* [Chapter 6 - Recursive functions](#Chapter-6)
|
||||
|
||||
---
|
||||
|
||||
#### Chapter-4
|
||||
##### Defining functions
|
||||
|
||||
###### exercise 1
|
||||
|
||||
```haskell
|
||||
halve :: [Int] -> ([Int], [Int])
|
||||
halve xs =
|
||||
(take n xs, drop n xs)
|
||||
where n = length xs `div` 2
|
||||
|
||||
halve :: [Int] -> ([Int], [Int])
|
||||
halve xs =
|
||||
splitAt (length xs `div` 2) xs
|
||||
```
|
||||
|
||||
###### exercise 2
|
||||
|
||||
```haskell
|
||||
-- a (head & tail)
|
||||
third :: [a] -> a
|
||||
third xs = head (tail (tail xs))
|
||||
|
||||
-- b (list indexing)
|
||||
third :: [a] -> a
|
||||
third xs = xs !! 2
|
||||
|
||||
-- c (pattern matching)
|
||||
third :: [a] -> a
|
||||
third (_:_:a:_) = a
|
||||
```
|
||||
|
||||
###### exercise 3
|
||||
|
||||
```haskell
|
||||
-- a (conditional expression)
|
||||
safetail :: [a] -> [a]
|
||||
safetail xs = if length xs > 0 then tail xs else []
|
||||
|
||||
-- b (guarded equation)
|
||||
safetail :: [a] -> [a]
|
||||
safetail xs | length xs > 0 = tail xs
|
||||
| otherwise = []
|
||||
|
||||
-- c (pattern matching)
|
||||
safetail :: [a] -> [a]
|
||||
safetail [] = []
|
||||
safetail xs = tail xs
|
||||
-- or:
|
||||
-- safetail (_:xs) = xs
|
||||
```
|
||||
|
||||
###### exercise 4
|
||||
|
||||
```haskell
|
||||
(||) :: Bool -> Bool -> Bool
|
||||
True || _ = True
|
||||
_ || True = True
|
||||
_ = False
|
||||
```
|
||||
|
||||
###### exercise 5
|
||||
|
||||
```haskell
|
||||
-- Use conditional expressions to define &&.
|
||||
(<#>) :: Bool -> Bool -> Bool
|
||||
a <#> b =
|
||||
if a then
|
||||
if b then True else False
|
||||
else
|
||||
False
|
||||
```
|
||||
|
||||
###### exercise 6
|
||||
|
||||
```haskell
|
||||
(<#>) :: Bool -> Bool -> Bool
|
||||
a <#> b =
|
||||
if a then b else False
|
||||
```
|
||||
|
||||
###### exercise 7
|
||||
|
||||
```haskell
|
||||
mult :: Int -> Int -> Int -> Int
|
||||
mult x y z = x*y*z
|
||||
|
||||
-- rewritten to use lambda functions.
|
||||
mult :: Int -> (Int -> (Int -> Int))
|
||||
mult = \x -> (\y -> (\z -> x * y * z))
|
||||
```
|
||||
|
||||
###### exercise 8
|
||||
|
||||
[Luhn algorithm](https://en.wikipedia.org/wiki/Luhn_algorithm)
|
||||
|
||||
```haskell
|
||||
luhnDouble :: Int -> Int
|
||||
luhnDouble x = x * 2 `mod` 9
|
||||
|
||||
luhn :: Int -> Int -> Int -> Int -> Bool
|
||||
luhn a b c d =
|
||||
sum ((map luhnDouble [a,c]) ++ [b,d]) `mod` 10 == 0
|
||||
|
||||
--ghci> luhn 1 7 8 4
|
||||
--True
|
||||
--ghci> luhn 4 7 8 3
|
||||
--False
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
#### Chapter-5
|
||||
##### List comprehensions
|
||||
|
||||
* exercise 1
|
||||
|
||||
```haskell
|
||||
sum [x^2 | x <- [0..100]]
|
||||
-- 338350
|
||||
```
|
||||
|
||||
###### exercise 2
|
||||
|
||||
```haskell
|
||||
grid :: Int -> Int -> [(Int, Int)]
|
||||
grid n m =
|
||||
[(x,y) | x <- [0..n], y <- [0..m]]
|
||||
|
||||
ghci> grid 1 2
|
||||
-- [(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)]
|
||||
```
|
||||
|
||||
###### exercise 3
|
||||
|
||||
```haskell
|
||||
square :: Int -> [(Int,Int)]
|
||||
square n =
|
||||
[(x,y) | (x,y) <- grid n n, x /= y]
|
||||
|
||||
ghci> square 2
|
||||
-- [(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)]
|
||||
```
|
||||
|
||||
###### exercise 4
|
||||
|
||||
```haskell
|
||||
replicate :: Int -> a -> [a]
|
||||
replicate n item =
|
||||
[item | _ <- [1..n]]
|
||||
|
||||
ghci> replicate 4 "test"
|
||||
-- ["test","test","test","test"]
|
||||
```
|
||||
|
||||
###### exercise 5
|
||||
|
||||
[Pythagorean theorem](https://en.wikipedia.org/wiki/Pythagorean_theorem)
|
||||
|
||||
```haskell
|
||||
isPythagorean :: Int -> Int -> Int -> Bool
|
||||
isPythagorean x y z =
|
||||
x^2 + y^2 == z^2
|
||||
|
||||
pyths :: Int -> [(Int,Int,Int)]
|
||||
pyths n =
|
||||
[(x,y,z) | x <- [1..n], y <- [1..n], z <- [1..n], isPythagorean x y z]
|
||||
|
||||
ghci> pyths 10
|
||||
-- [(3,4,5),(4,3,5),(6,8,10),(8,6,10)]
|
||||
```
|
||||
|
||||
###### exercise 6
|
||||
|
||||
[Perfect number](https://en.wikipedia.org/wiki/Perfect_number)
|
||||
|
||||
```haskell
|
||||
factors :: Int -> [Int]
|
||||
factors n = [x | x <- [1..n], n `mod` x == 0]
|
||||
|
||||
perfects :: Int -> [Int]
|
||||
perfects limit =
|
||||
[x | x <- [1..limit], sum (factors x) - x == x]
|
||||
|
||||
ghci> perfects 10000
|
||||
-- [6,28,496,8128]
|
||||
```
|
||||
|
||||
###### exercise 7
|
||||
*(I did not understand this one)*
|
||||
|
||||
###### exercise 8
|
||||
|
||||
Use the **find** library function in [Data.List 9.8.2](https://downloads.haskell.org/ghc/9.8.2/docs/libraries/base-4.19.1.0-179c/Data-List.html#v:find)
|
||||
|
||||
```haskell
|
||||
find :: (a -> Bool) -> [a] -> Maybe a
|
||||
-- The find function takes a predicate and a list and returns the first element in the list matching the predicate, or Nothing if there is no such element.
|
||||
```
|
||||
|
||||
```haskell
|
||||
positions :: Eq a => a -> [a] -> [Int]
|
||||
positions x xs =
|
||||
[i | (x',i) <- zip xs [0..], x == x']
|
||||
|
||||
-- using find function, though I doubt its correct...
|
||||
|
||||
positions :: Eq a => a -> [a] -> [Int]
|
||||
positions x xs =
|
||||
[i | (x',i) <- zip xs [0..], isJust (find (==x) [x'])]
|
||||
|
||||
positions 2 [1,1,0,2,46,6,8,9,2,3,4,2,4,9,2]
|
||||
-- [3,8,11,14]
|
||||
|
||||
-- You can also use:
|
||||
positions :: Eq a => a -> [a] -> [Int]
|
||||
positions x = elemIndices x
|
||||
```
|
||||
|
||||
###### exercise 9
|
||||
|
||||
[Scalar product](https://en.wikipedia.org/wiki/Dot_product)
|
||||
|
||||
```haskell
|
||||
scalarproduct :: [Int] -> [Int] -> Int
|
||||
scalarproduct xs ys =
|
||||
sum [x*y | (x,y) <- zip xs ys]
|
||||
|
||||
ghci> scalarproduct [1,2,3] [4,5,6]
|
||||
-- 32
|
||||
```
|
||||
|
||||
###### execise 10
|
||||
|
||||
[Caesar's Cipher](./caesar-cipher)
|
||||
|
||||
---
|
||||
|
||||
#### Chapter-6
|
||||
##### Recursive functions
|
||||
47
src/Pages/Software/haskell/en/lambda-expressions.md
Normal file
47
src/Pages/Software/haskell/en/lambda-expressions.md
Normal file
@ -0,0 +1,47 @@
|
||||
## Lambda expressions
|
||||
|
||||
You can define a function like:
|
||||
|
||||
```haskell
|
||||
double :: Int -> Int
|
||||
double x = x + x
|
||||
```
|
||||
|
||||
Which can also be written as an anonymous function:
|
||||
|
||||
```haskell
|
||||
\x -> x + x
|
||||
```
|
||||
|
||||
Here, the **\\** symbol represents the Greek letter lambda: **λ**. This is derived from [lambda calculus](https://en.wikipedia.org/wiki/Lambda_calculus).
|
||||
|
||||
Lambda expressions can be used to more explicitly state that a function is returned.
|
||||
|
||||
Consider:
|
||||
|
||||
```haskell
|
||||
const :: a -> b -> a
|
||||
const x _ = x
|
||||
```
|
||||
|
||||
This can be written using a lambda expression and added parenthesis in the type definition. This is more explicit in that a function is being returned.
|
||||
|
||||
```haskell
|
||||
const :: a -> (b -> a)
|
||||
const x = \_ -> x
|
||||
```
|
||||
|
||||
And as an anonymous function. Consider the difference between these similar functions that return a list of odd numbers:
|
||||
|
||||
```haskell
|
||||
odds :: Int -> [Int]
|
||||
odds n = map f [0..n-1]
|
||||
where f x = x*2 + 1
|
||||
|
||||
odds :: Int -> [Int]
|
||||
odds n = map (\x -> x*2 + 1) [0..n-1]
|
||||
|
||||
-- > odds 15
|
||||
-- > [1,3,5,7,9,11,13,15,17,19,21,23,25,27,29]
|
||||
```
|
||||
|
||||
119
src/Pages/Software/haskell/en/lists.md
Normal file
119
src/Pages/Software/haskell/en/lists.md
Normal file
@ -0,0 +1,119 @@
|
||||
## Lists
|
||||
|
||||
Lists are constructed one element at a time starting from an empty **[]** list using the *cons* operator **:**. For example, **[1,2,3]** can be decomposed as:
|
||||
|
||||
```haskell
|
||||
[1,2,3]
|
||||
--
|
||||
1 : [2,3]
|
||||
--
|
||||
1 : (2 : [3])
|
||||
--
|
||||
1 : (2 : (3 : []))
|
||||
```
|
||||
|
||||
To verify if a list with 3 numbers starts with the integer **1**, you can use pattern matching.
|
||||
|
||||
```haskell
|
||||
startsWithOne :: [Int] -> Bool
|
||||
startsWithOne [1, _, _] = True
|
||||
startsWithOne _ = False
|
||||
```
|
||||
|
||||
### Access elements
|
||||
|
||||
To access an element in a list, the indexing operator **!!** can be used.
|
||||
|
||||
```haskell
|
||||
-- Get the third element of a list.
|
||||
third :: [a] -> a
|
||||
third xs = xs !! 2
|
||||
```
|
||||
|
||||
### list comprehension
|
||||
|
||||
* Wikipedia: [List comprehension](https://en.wikipedia.org/wiki/List_comprehension).
|
||||
|
||||
|
||||
```haskell
|
||||
ghci> [x^2 | x <- [1..6]]
|
||||
-- [1,4,9,16,25,36]
|
||||
```
|
||||
|
||||
* The **|** symbol is read as: "*such that*".
|
||||
* The **<-** symbol is read as: "*drawn from*".
|
||||
* And **x <- [1..6]** is called a: "*generator*".
|
||||
|
||||
A list comprehension can have more than one generator.
|
||||
|
||||
```haskell
|
||||
ghci> [(x,y) | x <- [1,2,3], y <- [4,5]]
|
||||
-- [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]
|
||||
```
|
||||
|
||||
Examples of list comprehensions:
|
||||
|
||||
```haskell
|
||||
halve :: [Int] -> ([Int], [Int])
|
||||
halve xs =
|
||||
([x | x <- xs, x < 4], [x | x <- xs, x >= 4])
|
||||
|
||||
-- halve [1,2,3,4,5,6]
|
||||
-- ([1,2,3],[4,5,6])
|
||||
```
|
||||
|
||||
How to actually halve the list properly:
|
||||
|
||||
```haskell
|
||||
halve :: [Int] -> ([Int], [Int])
|
||||
halve xs =
|
||||
(take n xs, drop n xs)
|
||||
where n = length xs `div` 2
|
||||
-- or
|
||||
splitAt (length xs `div` 2) xs
|
||||
```
|
||||
|
||||
Here the **length** function replaces all elements with a 1 and sums the total:
|
||||
|
||||
```haskell
|
||||
length :: [a] -> Int
|
||||
length xs = sum [1 | _ <- xs]
|
||||
length [1,4,8,90]
|
||||
-- 4
|
||||
```
|
||||
|
||||
You can use logical expressions as a **guard**, to filter values created by list comprehensions.
|
||||
|
||||
```haskell
|
||||
factors :: Int -> [Int]
|
||||
factors n = [x | x <- [1..n], n `mod` x == 0]
|
||||
|
||||
factors 20
|
||||
-- [1,2,4,5,10,20]
|
||||
factors 13
|
||||
-- [1,13]
|
||||
```
|
||||
|
||||
And you can use this **factors** function to determine **prime** numbers.
|
||||
|
||||
* Wikipedia: [Prime number](https://en.wikipedia.org/wiki/Prime_number)
|
||||
|
||||
```haskell
|
||||
prime :: Int -> Bool
|
||||
prime n = factors n == [1,n]
|
||||
|
||||
prime 15
|
||||
--False
|
||||
prime 13
|
||||
-- True
|
||||
```
|
||||
And with this **prime** function, we can use list comprehension to determine a range of prime numbers!
|
||||
|
||||
```haskell
|
||||
primes :: Int -> [Int]
|
||||
primes n = [x | x <- [2..n], prime x]
|
||||
|
||||
primes 50
|
||||
-- [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47]
|
||||
```
|
||||
|
||||
@ -2,4 +2,15 @@
|
||||
|
||||
These are my notes on the functional programming language Haskell.
|
||||
|
||||
* [Curried Functions](./curried-functions)
|
||||
* [Curried functions](./curried-functions)
|
||||
* [Conditional expressions and Guarded equations](./conditional-expressions-and-guarded-equations)
|
||||
* [Lambda expressions](./lambda-expressions)
|
||||
* [Lists](./lists)
|
||||
* [Strings](./strings)
|
||||
* [Caesar Cipher](./caesar-cipher)
|
||||
* [Pattern matching](./pattern-matching)
|
||||
* [Recursive functions](./recursive-functions)
|
||||
|
||||
### Books
|
||||
|
||||
* [Programming in Haskell by: Graham Hutton (exercise answers)](./graham-hutton-answers)
|
||||
9
src/Pages/Software/haskell/en/pattern-matching.md
Normal file
9
src/Pages/Software/haskell/en/pattern-matching.md
Normal file
@ -0,0 +1,9 @@
|
||||
## Pattern matching
|
||||
|
||||
An example to determine the third element of a list, (with at least 3 elements):
|
||||
|
||||
```haskell
|
||||
third :: [a] -> a
|
||||
third (_:_:x:_) = x
|
||||
```
|
||||
|
||||
21
src/Pages/Software/haskell/en/recursive-functions.md
Normal file
21
src/Pages/Software/haskell/en/recursive-functions.md
Normal file
@ -0,0 +1,21 @@
|
||||
## Recursive functions
|
||||
|
||||
Recursion is the basic mechanism for looping in Haskell.
|
||||
|
||||
Determine the [factorial](https://en.wikipedia.org/wiki/Factorial).
|
||||
|
||||
```haskell
|
||||
factorial :: Int -> Int
|
||||
factorial 0 = 1
|
||||
factorial n = n * factorial (n-1)
|
||||
```
|
||||
|
||||
The factorial of 3, actually is calculated as such:
|
||||
|
||||
```haskell
|
||||
factorial 3
|
||||
3 * factorial 2
|
||||
3 * (2 * factorial 1)
|
||||
3 * (2 * (1 * factorial 0))
|
||||
3 * (2 * (1 * 1))
|
||||
```
|
||||
33
src/Pages/Software/haskell/en/strings.md
Normal file
33
src/Pages/Software/haskell/en/strings.md
Normal file
@ -0,0 +1,33 @@
|
||||
## Strings
|
||||
|
||||
Strings are not primitive types, but a list of characters.
|
||||
|
||||
For example,
|
||||
|
||||
```haskell
|
||||
"abc" :: String
|
||||
-- is actually:
|
||||
['a','b','c'] :: [Char]
|
||||
```
|
||||
Because of this, polymorphic functions on lists, can be used with strings.
|
||||
|
||||
```haskell
|
||||
"abcde" !! 2
|
||||
-- 'c'
|
||||
take 3 "abcde"
|
||||
-- "abc"
|
||||
length "abcde"
|
||||
-- 5
|
||||
zip "abc" [1,2,3,4]
|
||||
-- [('a',1),('b',2),('c',3)]
|
||||
```
|
||||
|
||||
And you can use list comprehensions with Strings.
|
||||
|
||||
```haskell
|
||||
count :: Char -> String -> Int
|
||||
count x xs = length [x' | x' <- xs, x == x']
|
||||
|
||||
count 'a' "paragraph"
|
||||
-- 3
|
||||
```
|
||||
Loading…
x
Reference in New Issue
Block a user